Solvent Control of the Bonding Mode of the Co-ordinated Thiocyanate Ion

By A. H. NORBURY,* P. E. SHAW, and A. I. P. SINHA

(Department of Chemistry, Loughborough University of Technology, Loughborough, Leics. LE11 3TU)

Summary Co^{III}-SCN bonds can be formed in the presence of suitable ligands but, for some ligands, isomerisation occurs in solution to give a mixture of linkage isomers: in contrast to the behaviour observed for thiocyanatopalladium(II) complexes, M-NCS bond formation is promoted in solvents having high dielectric constants.

BURMEISTER¹ has recently published a paper with the above title in which he reported that the bonding mode of the co-ordinated thiocyanate ion is dependent upon the nature of the solvent. In particular, he observed that solvents with high dielectric constants promote Pd-SCN bonding when either of the linkage isomers $Pd(AsPh_3)_2(NCS)_2$ or Pd(AsPh₃)₂(SCN)₂ are dissolved, whereas solvents with low dielectric constants give rise to a mixture of Pd-NCS, Pd-SCN, and Pd-SCN-Pd bonds. These results prompt us to report some of our results for thiocyanate complexes of a class "a" metal in which the opposite effect is observed.

We have studied the system trans-Co(dmg)₂L(CNS) (where dmg = dimethylglyoximato- and CNS implies that the mode of bonding of the thiocyanate group is unspecified). We have reported² previously the isolation of linkage isomers when L = py. Since the isomers have v_{CN} bonds at very similar wavelengths (N-bonded, 2128 cm⁻¹ is higher than S-bonded, 2118 cm⁻¹ unlike most examples) we have relied on the integrated intensities³ to characterise the two species, and have supported this evidence with ¹H n.m.r. results: the methyl protons of the dimethylglyoximato-moiety show chemical shifts which are dependent on the nature of the trans-ligands.4

When Co(dmg)₂(py)(SCN) is dissolved in CHCl₃, CH₂Cl₂, CH₂Cl·CH₂Cl, MeCN, or MeNO₂ the spectra obtained are similar to that in a KBr disc and show an integrated intensity typical of an S-bonded thiocyanate. The spectra do not change significantly with time. The integrated intensities of the same compound in formamide and dimethylformamide show an increasing proportion of the N-bonded isomer (although only one peak is observed) suggesting that the principal reaction taking place may be represented by the following equilibrium: Co(dmg)₂L(SCN) \approx Co(dmg)₂L(NCS). The results in HCONMe₂ indicated

that approximately equal amounts of the two isomers are present after three days: A increases from 1.92×10^{-4} to 6.30×10^{-4} M⁻¹ cm².

The linkage isomer Co(dmg)₂(py)(NCS) is generally less soluble, so that fewer solvents are available for its study. In MeCN, MeNO₂, and HCONMe₂ more than one peak is observed in solution corresponding to the formation of the free ion, and in some cases of the bridging group Co-NCS-Co. There were indications of NCS- formation in some solvents in the case of Co(dmg)₂(py)(SCN), but only in relatively small amounts.

When pyridine is replaced by other ligands trans to the thiocyanate group, only one n.m.r. peak is observed for L = 3-chloro-, 3-bromo-, 3-methyl-, and 4-methyl-pyridine in $CDCl_3$ whereas two are present in $(CD_3)_2SO$ for the same complexes. The integrated intensities for these complexes follow a similar pattern, namely they are close to 3×10^{-4} M^{-1} cm² in CHCl₃ but in the range 5-7 \times 10⁻⁴ M^{-1} cm² in HCONMe₂. This effect of solvent operates only in the presence of certain ligands trans to the thiocyanate group and not of others: a predominantly N-bonded complex is observed in both $CHCl_3$ and $HCONMe_2$ when $L = NO_2^-$, but S-bonding is maintained in both these solvents when $L = NH_{2}$.

In general, class "a" metals form N-bonded thiocyanate complexes while class "b" metals bond to thiocyanate through sulphur, and the effect of π -bonding ligands is to reverse each of these situations. Thus, Pd(NH₃)₂(SCN)₂ and $[Co(NH_3)_5NCS]^{2+}$ are typical examples of mixed-ligand complexes with neutral ligands having no ability to delocalise electrons from the metal whereas, with π -bonding ligands, compounds such as Pd(PEt₃)₂(NCS)₂ and [Co- $(dmg)_2$ (SCN)₂]⁻ are formed (see ref. 5 for further examples and for references). When our results on solvent effects are compared and contrasted with those of Burmeister,¹ it appears that here is another example of effects acting in different directions on thiocyanate complexes of class "a" and class "b" metals, respectively. Solvents of high dielectric constant favour S-bonding in linkage isomers of $\mathrm{Pd}^{\mathrm{II}}$ (class "b"), 1 but N-bonding in linkage isomers of CoIII (class "a").

(Received, July 15th, 1970; Com. 1143.)

¹ J. L. Burmeister, R. L. Hassel, and R. J. Phelan, Chem. Comm., 1970, 679.

- 2 A. H. Norbury and A. I. P. Sinha, Inorg. Nuclear Chem. Letters, 1968, 4, 617.
 3 C. Pecile, Inorg. Chem., 1966, 5, 210; R. Larssen and A. Miezis, Acta Chem. Scand., 1969, 23, 37.
 4 H. A. O. Hill and K. G. Morallee, J. Chem. Soc. (A), 1969, 554.
- ⁵ A. H. Norbury and A. I. P. Sinha, *Quart. Rev.*, 1970, 24, 69.